Scientific notes

Isolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip Technology

Introduction

Obesity and obesity-related co-morbidities are on the rise globally, necessitating the development of novel treatments. White adipose tissue (WAT) is a key regulator of whole-body metabolism and energy balance, as well as a key role in the development of insulin resistance and type 2 diabetes.

3d-cell-culture-Cherry-Biotech-CubiX-microphysiological-system-adipocytes-diabetes-adiponectin

This study describes a new technique to isolate and culture mature human adipocytes. White adipose tissue (WAT) dysregulation plays a central role in the development of insulin resistance and type 2 diabetes (T2D). To develop new treatments for T2D, more physiologically relevant in vitro adipocyte models are required.

How to culture vascularized & immunocompetent 3D models in a standard Multiwell

Abstract

The authors state that “Research on white adipose tissue (WAT), which constitutes one-fifth to one-half of the total body mass of a human’s body, has gained more and more interest and attention in the era of “diabesity”.

In vitro research on mature human WAT is hampered by many challenges and, hence, a majority of WAT-related research is conducted using animal models as well as clinical observations and genome-wide association studies (GWAS), both featuring limitations in terms of translatability and potential for experimental interventions, respectively.

Here, we describe methods to isolate primary mature human adipocytes from biopsies and to fabricate tailored organ-on-chip platforms for the long-term culture of WAT constructs.”

References

Rogal J, Roosz J, Loskill P. Isolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip Technology. Methods Mol Biol. 2022;2373:297-313. doi: 10.1007/978-1-0716-1693-2_18. PMID: 34520020.

Related Posts

Human cells: Microfluidics as a tool for drug delivery...
Introduction The term “drug delivery” generally refers to the administration of a certain chemical compound to a biological system for t...
Read more
3d-cell-culture-Cherry-biotech-brown-adipose-tissue
Perilipin 5 links mitochondrial uncoupled respiration in brown fa...
Introduction According to a recent study headed by UT Southwestern researchers, increasing a protein contained in brown fat appears to lower...
Read more
Nanoscopy to improve drug screening and liver fenestrations...
Introduction Drug induced liver injury (DILI)is one of the major reasons of drug attrition and it mainly occurs because of preclinical trial...
Read more

get in touch

Get the best insights about Cherry Biotech by Email Let’s stay in touch!
As part of our commercial prospecting, we may need to process your personal data. For more information, please consult our Privacy Policy