Application notes

Scientific Poster – Adipose Tissue Organoid Model from Stromal Vascular Fraction

SCIENTIFIC POSTER —
Adipose tissue organoid model from stromal vascular fraction

Mathilde Cadoux, PhD; Emilie Ouanounou; Ghofrane Ben Messaoud; Hadhemi Mejri; Julius Elliot Nyegaard Grothen, PhD; Thomas Askov Pedersen, PhD; Dario Fassini, PhD

With more than 420 million Type 2 diabetes cases worldwide (expected to reach 1 Billion by 2030), and around 900 million obese patients in the world (expected to double by 2030), those two pathologies combined are considered the next pandemic by WHO and other health institutes.  

To quickly develop new efficient treatments, new human-like models are needed. This study entitled “Adipose tissue organoid model from stromal vascular fraction” offers an innovative in vitro model to replicate the complexity of adipose tissue. By using stromal vascular fraction (SVF) isolated from human adipose tissue, we propose an alternative and human physiologically relevant in vitro model.

The results using our CubiX for dynamic 3D organoids culture have shown:

  • Improve the viability of the organoids (no necrotic core) vs static culture conditions
  • Preserve the viability and inclusion of endothelial cells (higher degree of physiology)
  • Increase the overall lipid content (pathology mimicking)

In this study, CubiX has enabled precise control of oxygen, nutrients, and flow, supporting the advancement of more refined and reliable in vitro organoid models.

The poster, title: Adipose tissue organoid model from stromal vascular fraction – is free to download here. Don’t miss out!

Adipose Tissue Organoid Model SVF-NovoNordisk-CherryBiotech

How to culture vascularized & immunocompetent 3D models in a standard Multiwell

Related Posts

3d-cell-culture-vascular-niche-microphysiological-system
The vascular niche in next generation microphysiological systems...
Introduction The phrase ‘vascular niche’ refers to a region rich in blood arteries where endothelial cells and mural cells, such as peri...
Read more
Organs-on-chip-ShantiA-2018
In Vitro Immune Organs-on-Chip for Drug Development...
Organs-on-Chip for Drug Development A drug should pass the preclinical evaluation phase to be FDA-approved. This relies (i) on in vitro cel...
Read more
Nanoscopy to improve drug screening and liver fenestrations...
Introduction Drug induced liver injury (DILI)is one of the major reasons of drug attrition and it mainly occurs because of preclinical trial...
Read more

get in touch

Get the best insights about Cherry Biotech by Email Let’s stay in touch!
As part of our commercial prospecting, we may need to process your personal data. For more information, please consult our Privacy Policy